Organophosphorus insecticides induce airway hyperreactivity by decreasing neuronal M2 muscarinic receptor function independent of acetylcholinesterase inhibition.
نویسندگان
چکیده
We previously demonstrated that the organophosphorus (OP) insecticide chlorpyrifos potentiates vagally induced bronchoconstriction independent of acetylcholinesterase (AChE) inhibition by decreasing the function of neuronal M2 muscarinic receptors that normally inhibit acetylcholine release from parasympathetic nerves supplying airway smooth muscle. However, it has been reported that different OPs may not affect muscarinic receptors equally. To determine if the effects of chlorpyrifos on airway hyperreactivity can be generalized to other OPs, we tested whether parathion and diazinon also inhibit neuronal M2 receptor function resulting in airway hyperreactivity. In control animals, the M2 agonist pilocarpine inhibits vagally induced bronchoconstriction in a dose-related manner. Treatment of guinea pigs with either parathion (1-10 mg/kg, sc) or diazinon (0.75-75 mg/kg, sc) shifted pilocarpine dose-response curves significantly to the right, indicating loss of neuronal M2 receptor function. These OP treatments also significantly potentiated vagally induced bronchoconstriction. Treatments that did not decrease M2 receptor function (parathion at 0.1 mg/kg, sc, or the non-OP insecticide permethrin at 150 mg/kg, sc) also did not cause airway hyperreactivity. None of the OP treatments altered bronchoconstriction induced by iv acetylcholine or methacholine in vagotomized guinea pigs, suggesting that OP-induced airway hyperreactivity is not due to altered function of muscarinic receptors on airway smooth muscle or to AChE inhibition. AChE assays of lung, blood, and brain confirmed that parathion and diazinon decreased M2 function at concentrations that did not inhibit AChE. These data suggest that multiple diethyl phosphorothionate OPs cause airway hyperreactivity via a common mechanism of M2 receptor dysfunction independent of AChE inhibition.
منابع مشابه
Organophosphorus Pesticides Decrease M2 Muscarinic Receptor Function in Guinea Pig Airway Nerves via Indirect Mechanisms
BACKGROUND Epidemiological studies link organophosphorus pesticide (OP) exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE) inhibitio...
متن کاملMechanisms of organophosphate insecticide-induced airway hyperreactivity.
It has been suggested that pesticide exposure may be a contributing factor underlying the increased incidence of asthma in the United States and other industrialized nations. To test this hypothesis, airway hyperreactivity was measured in guinea pigs exposed to chlorpyrifos, a widely used organophosphate pesticide. Electrical stimulation of the vagus nerves caused frequency-dependent bronchocon...
متن کاملMacrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs.
Organophosphorus pesticides (OPs) are implicated in human asthma. We previously demonstrated that, at concentrations that do not inhibit acetylcholinesterase activity, the OP parathion causes airway hyperreactivity in guinea pigs as a result of functional loss of inhibitory M2 muscarinic receptors on parasympathetic nerves. Because macrophages are associated with asthma, we investigated whether...
متن کاملRole of insulin in antigen-induced airway eosinophilia and neuronal M2 muscarinic receptor dysfunction.
In the lungs, neuronal M2 muscarinic receptors limit ACh release from parasympathetic nerves. In antigen-challenged animals, eosinophil proteins block these receptors, resulting in increased ACh release and vagally mediated hyperresponsiveness. In contrast, diabetic rats are hyporesponsive and have increased M2 receptor function. Because there is a low incidence of asthma among diabetic patient...
متن کاملDouble-stranded RNA causes airway hyperreactivity and neuronal M2 muscarinic receptor dysfunction.
Viral infection causes dysfunction of inhibitory M2 muscarinic receptors (M2Rs) on parasympathetic nerves, leading to airway hyperreactivity. The mechanisms of M2R dysfunction are incompletely understood. Double-stranded RNA (dsRNA), a product of viral replication, promotes the expression of interferons. Interferon-gamma decreases M2R gene expression in cultured airway parasympathetic neurons. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 83 1 شماره
صفحات -
تاریخ انتشار 2005